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Abstract
Strongly coupled two-dimensional systems of dust particles are often observed
in dusty plasma experiments. We analyse thermodynamic quantities of two-
dimensional Yukawa plasmas and apply the results to structure formations in
two-dimensional finite systems. We include the nonlocal effect which has
been neglected in the previous analysis and give a relatively simple method to
estimate important parameters in dusty plasmas.

PACS numbers: 52.27.Gr, 52.27.Lw, 52.27.Kn, 05.65.+b

1. Introduction

The two-dimensional Yukawa system can be regarded as a model which covers both systems
with long- and short-ranged interactions. Static and dynamic properties have been investigated
including distribution functions, dynamic fluctuation spectra and dispersion relations of various
modes of oscillations [1]. The results are of much interest by themselves and also help us
estimate physical parameters in experiments [2–5].

Thermodynamics of a two-dimensional system is also essential in the shell model [6]
which has been successfully applied in reproducing three-dimensional structure formations
of Yukawa dust particles under the influence of a one-dimensional force field such as gravity
[7] and in the isotropic environment [8, 9]. In this model, we assume that the system is
composed of shells, their geometry reflecting the symmetry of the system, and optimize their
number, positions and populations to minimize the total (free) energy. The negative intra-shell
correlation (or cohesive) energy as a two-dimensional system keeps the optimized state from
reduction to uniform distribution with infinite number of shells of infinitesimal surface density.

We here present thermodynamic properties of a two-dimensional Yukawa system and
apply them to parameter estimation and theoretical understanding of structure formations
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of dust particles. We consider the system of particles with the surface density n and the
temperature T interacting via the Yukawa potential

v(r) = e2

r
exp(−r/λ), (1)

where e is the charge on a particle, λ is the screening length and r is the mutual distance. We
assume the existence of the inert uniform background charge of density −ne which neutralizes
the charge density of particles. This system is characterized by the parameters � and ξ given
respectively by

� = e2

kBT a
and ξ = a

λ
, (2)

where a = 1/(πn)1/2 is the mean distance.

2. Thermodynamics of two-dimensional Yukawa plasmas

2.1. Expansion in coupling parameter and interpolation formula

We analyse here thermodynamics of two-dimensional Yukawa plasmas [10]. The two-
dimensional nature of this system is clearly shown in the domain of weak coupling, especially
when compared with the Coulombic case [11]. In the domain of intermediate or strong
coupling, we have simple interpolations.

Let us first assume that the coupling is weak or � � 1. In this case, the many body
screening effect is characterized by the two-dimensional Debye wave number KD defined by
KD = 2πne2/kBT [11]. While KD characterizes the screening by many body effects, λ

denotes the inherent decay of interaction. When 1/KD � λ, the screening is controlled by
1/KD and the result for the Coulombic case [11] is still valid. We thus assume, in contrast,
that

e2/kBT � λ � 1/KD. (3)

In the random phase approximation (RPA) [12], the interaction (correlation or cohesive)
energy per unit volume is given by

− n2

2kBT

∫
dr v(r)u(r), (4)

where

u(r) = 1

(2π)2

∫
dk

2πe2

(k2 + 1/λ2)1/2 + KD

exp(ik · r), (5)

indicating that the long-range divergence at r → ∞ related to Coulomb-like interaction is
cut off by the smaller of either λ or 1/KD . Due to reduced dimensionality, the RPA result is
also logarithmically divergent for r → 0 and we have to take the short-range correlation into
account properly [11, 13]. The latter gives the effective cutoff around r ∼ e2/kBT .

The Helmholtz free energy F is separated into the ideal gas part F ideal and the interaction
part �F as F = F ideal + �F , where �F = NkBTf (�, ξ) and f is a dimensionless function
of dimensionless quantities � and ξ . In the domain of weak coupling, we have

f (�, ξ) = −�2

2

[
− ln

(
2
e2/kBT

λ

)
− 2γ +

3

2

]
= −�2

2

[
− ln(2�ξ) − 2γ +

3

2

]
, (6)

where γ = 0.5772 . . . is the Euler’s constant.
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When � � 1, the internal energy U approaches to the value (Madelung energy) for the
triangular lattice [14], similar to the case of Coulombic system [15], as

U ′(�, ξ) = U

NkBT
→ c(ξ)� when � → ∞. (7)

Here, the normalized value U ′ = U/NkBT is a dimensionless function of dimensionless
parameters and c(ξ) is a coefficient dependent on ξ [3, 14].

In the case where � is neither small nor large, we resort to the numerical simulation. We
have obtained the value of U covering the domain of intermediate and strong coupling with
0.5 � ξ � 2. We note that U reduces to the Madelung energy as (7) when � → ∞ and analyse
the behaviour of the normalized difference [U ′(� → ∞, ξ) − U ′(�, ξ)]/U ′(� → ∞, ξ)

which decreases from unity to 0 with the increase of � from 0 to ∞. We finally have
for 0.05 � � � 100 and 0.5 � ξ � 2 [10]

U ′(�, ξ) = c(ξ)� − [c(ξ)� − U ′(0.05, ξ)] exp[−2.55(�0.18 − 0.050.18)]. (8)

This interpolation works with relative error less than 1% for 10 � � � 100, less than 3%
for 1 � � � 10 and less than 10% for 0.05 � � � 1. We obtain the nonideal part of the
Helmholtz free energy �F = NkBTf (�, ξ) for 0.05 � � � 100 and 0.5 � ξ � 2 by [10]

f (�, ξ) =
(∫ �1

0
+

∫ �

�1

)
d�

�
U ′(�, ξ), �1 = 0.05. (9)

For � � 0.05, we apply the result in the weak coupling domain.

2.2. Remarks

At first sight, one may expect the existence of an additional internal energy (per particle)
coming from the Yukawa repulsion

n

2

∫
dr v(r) = �

ξ
kBT (10)

even in the case of no correlation between particles. We emphasize that this is not the
case in our Yukawa plasmas: the neutralizing background is built-in and all contributions to
thermodynamic quantities beyond the ideal gas values are due to correlation between particles.
For example, the internal (correlation or cohesive) energy vanishes in randomly distributed or
uniformly smeared-out cases. (In the Coulombic case, one is automatically reminded of the
existence of neutralizing background by the fact that the integral (10) is divergent.)

When periodic boundary conditions are adopted and the area of the unit cell is kept constant
in numerical simulations, the existence of the neutralizing background is automatically taken
into account. In real systems, however, the background is missing or provided by real physical
objects. In both cases, one has to be careful to take the situation properly into account.

3. Application: two-dimensional finite dust systems

3.1. Structure

We now apply the above results to the analysis of two-dimensional systems of dust particles
observed in experiments where they are confined laterally by ring electrodes or other methods.
Since the latter confinement is expressed by a parabolic potential in the system plane, the
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potential part of the Hamiltonian is written as

1

2

∑
i �=j

e2

rij

exp(−rij /λ) +
1

2

∑
i

kr2
i = k

2
λ2


α

∑
i �=j

1

rij /λ
exp(−rij /λ) +

∑
i

(ri/λ)2


 .

(11)

Here, α = e2/kλ3 characterizes the strength of Yukawa interaction relative to lateral
confinement. Note that the parabolic potential provides the effect similar to the neutralizing
background which is not built-in in this system.

When the number of particles is not too small, we may express the structure by the radial
density ρ(r) and determine ρ(r) so as to minimize the Helmholtz free energy as a functional
of ρ(r). When α � 1, the system has a large lateral extension and we may further adopt the
local expression for the Helmholtz free energy: the Helmholtz free energy is given by a spatial
integral of the free energy density and the latter value is approximated by that of a uniform
system with the number density at each point.

Some examples of results are shown in figures 1(a)–(c). In figures 1(a) and (b), we
observe that, when α � 1, numerical simulations are reproduced to a good accuracy [2, 3] and
the effect of correlation (cohesion) plays an important role especially when α � 1. We also
note that the behaviour of the density on the periphery gives information on the temperature
of the system [5].

In the Helmholtz free energy to be minimized, the term

e2

2

∫ ∫
dr dr′ exp(−|r − r′|/λ)

|r − r′| ρ(r)ρ(r ′) (12)

leads to

e2δρ(r)

∫
dr′ exp(−|r − r′|/λ)

|r − r′| ρ(r ′), (13)

when the variation is taken with respect to ρ(r). In the local approximation [2], the kernel of
this integral has been replaced by 2πλδ(r−r′). We include here the nonlocal effect evaluating
the integral up to the next term as

2πλρ(r) + πλ3�ρ(r) = 2πλρ(r) + πλ3 1

r

d

dr
r

d

dr
ρ(r). (14)

We then have

2πe2λρ(r) + πe2λ3 1

r

d

dr
r

d

dr
ρ(r) = µ − 1

2
kr2, (15)

µ being the Lagrange’s multiplier, instead of (5.13) in [2]. This gives (corresponding to (5.17)
and (5.18) in [2])

λ2ρ(r) = 1

4πα

[( r1

λ

)2
−

( r

λ

)2
]

+
2

4πα
(16)

for r � r1, where
( r1

λ

)2
= (8αN + 4)1/2 − 2, (17)

N being the total number of particles. An example of the result is shown in figure 1(c) and
we observe that the discrepancy between simulation and theory is substantially improved
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Figure 1. Radial distribution in the two-dimensional finite Yukawa system at low temperatures.
Simulation (thin solid lines) are compared with theory: (1) (broken lines) local approximation
without cohesive energy, (2) (solid line) local approximation with cohesive energy and (3) (thick
solid line) with nonlocal effect. In (b), theories (1)–(3) are almost the same except for the
discontinuity on the edge. In (c), (1) and (2) are almost the same.

compared with the previous result [2]. We also note that the effect of correlation energy is
small when α � 1.
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3.2. Estimation of parameters

The charge on a dust particle e and the screening length λ are among the most important
parameters in dusty plasmas. Theoretical results for the distribution of particles in two-
dimensional finite systems can be applied to identify these parameters through direct
observations of ρ(r). Our theory includes α, the temperature and the number of particles
as parameters and gives λ2ρ(r/λ) as a function of r/λ. Counting number of particles and
noting that the dimensionless combination of the system radius rm and the central density
of particles ρ(0), ρ(0)r2

m, depends on α and the temperature, we can determine these two
parameters from the observed value of ρ(0)r2

m and the density profile on the periphery. After
α and the temperature are known, λ is obtained from the experimental value of rm which is
theoretically given in terms of λ.

In order to have the charge e from α and λ, however, the value of k is still to be identified
and some trick has been needed. For example, the electrode giving vertical levitation is devised
to specify the values of k by its radius of curvature [4].

We here note that, in the case of ring electrodes often used in experiments, k is related to
the charge Qring of the ring electrode (with radius R0) through [2]

k ∼ 1

2

Qring exp(−R0/λ)

R0

(
1 +

R0

λ
+

R2
0

λ2

)
. (18)

Therefore, we have

k ∼ 1

2
CringVring

exp(−R0/λ)

R0

(
1 +

R0

λ
+

R2
0

λ2

)
. (19)

Here Vring and Cring are the electrostatic potential and the capacitance of the ring electrode,
respectively, both of which can be measured experimentally. Combined with the determination
of α and λ, this gives a new relatively simple method to estimate e and λ in dusty plasmas
compared with those hitherto reported [4] or those including observation of dynamics.

4. Conclusions

We have obtained thermodynamic quantities of two-dimensional Yukawa plasmas and
expressed results in the form of simple interpolation formulae. Results are applied to analyses
of structure formations of dust particles with inclusion of the nonlocal effect. It is shown that
the results are useful in estimating dust charge and other parameters.
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